
Attribution/License

● Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)
● This slideset and associated source code may not be distributed

without prior written notice

1

http://www.mshah.io

The Case for Graphics
-- Programming in DLang

with Mike Shah

18:00 - 18:30 UTC Sat, March 16, 2024

~30 minutes | Introductory Audience 2

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

What you’re going to learn today (1/4)

● Demo 3 of 3
○ Using Render targets
○ (Same as demo # 2)

3

What you’re going to learn today (2/4)

● Demo 2 of 3
○ The ‘Stanford bunny’
○ We’ll talk about working with data

in D

4

What you’re going to learn today (3/4)

● Demo 1 of 3
● The classic triangle

○ This is where we will begin!

5

What you’re going to learn today (4/4)

● Demo 1 of 3
● The classic triangle

○ This is where we will begin!

6

My Goal Today:

Is to introduce you to Dlang, and get you excited about
using it for graphics (games/simulation/etc.) application

programming

Abstract

Abstract: ‘write fast, read fast, and run fast’ is the mantra found on the D
programming language homepage (https://dlang.org/). Notice a word game
and graphics programmers like is used 3 times –fast! In this talk I will show
how the D programming language can be used for Graphics programming
using OpenGL (And I’ll mention Vulkan too!). I’ll show a small graphics demo
and highlight how the D programming language was used to make it easier to
architect a graphics scene. Attendees of this talk will leave understanding how
to setup a basic graphics application, and a few tips on why Dlang could be
their secret weapon for rapidly building high performance graphics
applications.

The abstract that you read and enticed
you to join me is here!

7

https://dlang.org/

Your Tour Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University
in Boston, Massachusetts.

○ I love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

○ My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

● I do consulting and technical training on modern C++,
DLang, Concurrency, OpenGL, and Vulkan projects

○ Usually graphics or games related -- e.g. Building 3D application
plugins

● Outside of work: guitar, running/weights, traveling and
cooking are fun to talk about

8

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Code for the talk

● Located here:
https://github.com/MikeShah/Talks/tree/main/2024/dconf_online

○ There are some sample projects for getting started with OpenGL

9

https://github.com/MikeShah/Talks/tree/main/2024/dconf_online

The Case for D
(By Andrei Alexandrescu)

10

The Case for DLang (1/3)

11

● Nearly 15 years ago Andrei
Alexandrescu wrote ‘The Case
for D’ (posted on Dr. Dobb’s
journal and other sources)

○ 15 years since, the D language has
continued to improve on its strong
foundations

● Andrei summarizes DLang as:
○ “D could be best described as a

high-level systems
programming language”

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-c
ase-for-d/217801225

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225

The Case for DLang

12

● Nearly 15 years ago Andrei
Alexandrescu wrote ‘The Case
for D’ (posted on Dr. Dobb’s
journal and other sources)

○ 15 years since, the D language has
continued to improve on its strong
foundations

● Andrei summarizes DLang as:
○ “D could be best described as a

high-level systems
programming language”

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-c
ase-for-d/217801225

At a glance D has many features: https://dlang.org/spec/spec.html

[1] and more here: https://dlang.org/comparison.html

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://dlang.org/spec/spec.html
https://dlang.org/comparison.html

The Case for DLang

13

● Nearly 15 years ago Andrei
Alexandrescu wrote ‘The Case
for D’ (posted on Dr. Dobb’s
journal and other sources)

○ 15 years since, the D language has
continued to improve on its strong
foundations

● Andrei summarizes DLang as:
○ “D could be best described as a

high-level systems
programming language”

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-c
ase-for-d/217801225

At a glance -- Dlang is :
● A compiled language (3 freely available compilers)

○ Extremely fast compilation with - DMD Compiler
○ Other two compilers offer more targets (LDC and GDC)

● statically typed language
● Plays well with C, C++, Obj-C

○ Embedded compiler - ImportC
○ e.g. of interoperation with C++ (Interfacing with C++)

● Many modern language features:
○ Ranges (and foreach), Compile-Time Function Execution (CTFE),

Array slicing, lambda’s, mixins, contracts, unit testing, template
constraints, multiple memory allocation strategies, and more[1].

[1] and more here: https://dlang.org/comparison.html

https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://web.archive.org/web/20121020122307/https://www.drdobbs.com/parallel/the-case-for-d/217801225
https://dlang.org/spec/importc.html
https://dlang.org/spec/cpp_interface.html
https://dlang.org/comparison.html
https://dlang.org/comparison.html

The Case for D
as a Graphics Programmer

(By Me -- Mike Shah)

14

What is needed for graphics programming?

15

Generally speaking:

1. A systems programming language (is most commonly used) for graphics
programming
a. Many graphics APIs (OpenGL, Vulkan, etc.) are C-based APIs
b. D talks with C very easily (See the interfacing guide), and it is often merely a matter of using a

binding to expose the C library functions to a programmer.
i. D also provides a way to transition C code (https://dlang.org/spec/importc.html) to D

code (C++ and Obj-C are also works in progress)
ii. See some of the example guides here: https://dlang.org/articles/ctod.html

2. We need a math library, or otherwise the ability to make a good math library
a. D itself provides operating overloading, which you can use.

https://dlang.org/spec/interfaceToC.html
https://dlang.org/spec/importc.html
https://dlang.org/articles/ctod.html

The Case for D for graphics programming

16

1. Most of the right defaults
a. e.g. variables are initialized (or use =void when speed matters), const is transitive, casts must

be explicit
2. Faster prototyping as a result of module system and excellent DMD compiler

a. (Can then leverage D frontends with LLVM and GCC backend for optimizations and target
platforms)

3. Can generate fast code
a. SIMD vector extensions available https://dlang.org/spec/simd.html
b. Multitasking support available [introduction here]:

i. Threads, fibers, etc.
4. It’s fun to write code in DLang (my personal bias)

https://dlang.org/spec/simd.html
https://www.youtube.com/watch?v=NWIU5wn1F1I

The Case for D for graphics programming

17

1. Most of the right defaults
a. e.g. variables are initialized (or use =void when speed matters), const is transitive, casts must

be explicit
2. Faster prototyping as a result of module system and excellent DMD compiler

a. (Can then leverage D frontends with LLVM and GCC backend for optimizations and target
platforms)

3. Can generate fast code
a. SIMD vector extensions available https://dlang.org/spec/simd.html
b. Multitasking support available [introduction here]:

i. Threads, fibers, etc.
4. It’s fun to write code in DLang (my personal bias)

I will show you! :)

https://dlang.org/spec/simd.html
https://www.youtube.com/watch?v=NWIU5wn1F1I

Demo 1
First Triangle

18

Graphics Programming Crash Course

19

● In order to get a triangle drawing using our a GPU
we need a few things:

○ 1. A window
○ 2. To setup OpenGL (or your preferred graphics API)
○ 3. Upload data from the CPU to GPU (i.e. the graphics

pipeline

Graphics Programming Crash Course - Window Setup

20

● The easiest way to setup a window is to use a cross-platform windowing
library like glfw or SDL

○ Mike Parker’s bindbc-glfw or bindbc-sdl are great packages to get started
○ https://code.dlang.org/packages/bindbc-glfw
○ These packages are ‘bindings’ that otherwise expose the C functions calls from windowing

libraries to D code

https://code.dlang.org/packages/bindbc-glfw

Graphics Programming Crash Course - Window Setup

21

● In the code samples in the talk
repository, I’ll show how to ‘bind’ to
C functions manually

○ In general, you should use the bindbc
or other bindings however, as that way
you’ll get a complete set of functions.

● But as you can see, talking to C
code is as simple as either
including the binding, or providing a
function or type declaration, and
then simply linking in the library

○ e.g. -L-lglfw3
■ -L -- passes a flag to the linker
■ -lglfw3 -- brings in the library
■ Additionally, you may specify

the path to where to find the
library file

● e.g.
-L-L/usr/local/lib

Graphics Programming Crash Course - API Setup

22

● For graphics APIs, then you need to typically ‘load’ the functions or
extensions.

○ For OpenGL, you can use a tool like ‘glad’ to generate the C-function declarations for each
function that your hardware supports.

■ https://glad.dav1d.de/

https://glad.dav1d.de/

Graphics Programming Crash Course - API Setup

23

● For graphics APIs, then you need to typically ‘load’ the functions or
extensions.

○ For OpenGL, you can use a tool like ‘glad’ to generate the C-function declarations for each
function that your hardware supports.

Now as we’re seeing our first D code --
let me mention the ‘D language’
advantage.
● D has a module system -- no need

to mess with .h or .hpp files (in
fact, there’s no preprocessor)

● Compiling with individual
modules allows the DMD
compiler to work super fast!

Graphics Programming Crash Course - API Setup

24

● For graphics APIs, then you need to typically ‘load’ the functions or
extensions.

○ For OpenGL, you can use a tool like ‘glad’ to generate the C-function declarations for each
function that your hardware supports.

Quality of life improvements
● Modules generally allow you to avoid

worrying about the order you declare
functions.

● There’s also ‘module level constructors’ that
are called before main.
○ This can be clearly utilized if you have

some initialization code -- like setting
up a graphics API prior to its use

■ ‘shared static this’ means that block
of code is called once ever (even
amongst many threads) -- and this
again is called before main() in
lexicographical order

Graphics Pipelines - High Level Abstraction

● We now have OpenGL functions loaded (using glad), and
a window setup (using glfw with our C binding)

● We are now ready to start doing some graphics
programming using the OpenGL API

25

Application Stage

Geometry

Rasterization and
Pixel Processing

Display

Graphics Pipelines - Application Stage

● At the application stage, this is
our main loop

○ We also will ‘send’ geometric data at
this stage from CPU to the GPU

○ The application stage otherwise is
where all the ‘cpu’ work is completed:

■ File I/O
■ cpu memory allocation
■ Handling input

26

Application Stage

Geometry

Rasterization and
Pixel Processing

Display

Graphics Pipelines - Geometry Stage

● At the geometry stage, we
are now on the GPU

○ Data that has been sent to
the GPU from the CPU is
being assembled into
primitives

○ Primitives may also be
transformed (e.g. rotated,
scaled, or translated)

27

Application Stage

Geometry

Rasterization and
Pixel Processing

Display

Graphics Pipelines - Rasterization

● At this stage, we represent
our geometric shapes (e.g.
triangles) as discrete
pixels.

● We also color in those
pixels based on their color
and transparency

28

Application Stage

Geometry

Rasterization and
Pixel Processing

Display

Graphics Pipelines - Display

● At the final stage you display the ‘frame’
that you have created.

○ This is stored in something known as a
‘framebuffer’ that at the least stores the colors
of your pixels.

29

Application Stage

Geometry

Rasterization and
Pixel Processing

Display

Displaying a Triangle

● To draw a triangle, we use
OpenGL to upload data
from the CPU to the GPU

○ For those who have done
graphics programming -- this
code is nearly the same as
any C or C++ tutorial you will
find

■ (i.e. all of the OpenGL
functions are the
same)

30

Displaying a Triangle

● To draw a triangle, we use
OpenGL to upload data
from the CPU to the GPU

○ For those who have done
graphics programming -- this
code is nearly the same as
any C or C++ tutorial you will
find

■ (i.e. all of the OpenGL
functions are the
same)

31

● One small change from C or
C++ is this line above.

○ D’s Compile-Time
Function Execution
(CTFE) and general
introspection capabilities
can be useful for
catching bugs at
compile-time

● The pragma I stuck in here is
to confirm at compile-time I
have the right amount of data.
○ Arrays are also ‘bounds

checked’ for safety (can
be turned off if needed)

https://wiki.dlang.org/Compile-time_vs._compile-time
https://wiki.dlang.org/Compile-time_vs._compile-time

Displaying a Triangle

● To draw a triangle, we use
OpenGL to upload data
from the CPU to the GPU

○ For those who have done
graphics programming -- this
code is nearly the same as
any C or C++ tutorial you will
find

■ (i.e. all of the OpenGL
functions are the
same)

32

● See this example below when
I did not populate color data
properly

● ‘static asserts’ can also be placed
to further write code more solid
code.

Example of a ‘mistake’ I made in preparation of the demo

https://dlang.org/spec/version.html#static-assert

Displaying a Triangle

● To draw a triangle, we use
OpenGL to upload data
from the CPU to the GPU

○ For those who have done
graphics programming -- this
code is nearly the same as
any C or C++ tutorial you will
find

■ (i.e. all of the OpenGL
functions are the
same)

33

● The enum ‘GL_FLOAT’ above is actually
an ‘integer’ type in the OpenGL API

○ The ‘float’ type we actually want is
the ‘alias’ to GLfloat shown in the
code

○ We could use a static assert at
compile-time with
GLfloat.sizeof to ensure it
meets our size requirements

● Luckily however, D’s basic types have
predictable sizes [table]

https://dlang.org/library/std/meta/alias.html
https://dlang.org/spec/version.html#static-assert
https://tour.dlang.org/tour/en/basics/basic-types

Displaying a Triangle

● To draw a triangle, we use
OpenGL to upload data
from the CPU to the GPU

○ For those who have done
graphics programming -- this
code is nearly the same as
any C or C++ tutorial you will
find

■ (i.e. all of the OpenGL
functions are the
same)

34

● Other quality of life features include things like explicit casting using the
‘cast’ keyword
○ (C on the left, and D on the right)

Graphics Pipelines - Shaders

● Now in order to actually do something, we have to
create a graphics pipeline

○ This is done by processing our geometry in a GPU program called
a ‘vertex’ or shader.

○ We then also write one other GPU program called a ‘fragment’ or
‘pixel’ shader

35

Application Stage

Geometry

Rasterization and
Pixel Processing

Display

Shader Code (1/2)

● To the right is all the shader code
needed

○ (Error checking separated out into
one other function)

36

Shader Code (2/2)

● To the right is all the shader code
needed

○ (Error checking separated out into
one other function)

37

● One interesting thing for this
demo is I did not bother to write
any code to load the shaders
from a file on disk.
○ Instead, I just imported the

code (similar to C23’s
upcoming #embed) feature.

● The advantage here is:
○ 1. primarily simplicity for

small programs [more on
working with C strings]

○ 2. If I do want to embed
code as data, it’s relatively
straightforward if I do not
want to go to disk

https://dlang.org/blog/2021/05/24/interfacing-d-with-c-strings-part-one/
https://dlang.org/blog/2021/05/24/interfacing-d-with-c-strings-part-one/

Demo 2
Objects

38

Parsing Structured Data

39

● If we want to draw
something more
interesting than triangles,
we will load that data from
a file.

● To the right -- is the entire
parser for the .obj file.

Parsing Structured Data

40

● If we want to draw
something more
interesting than triangles,
we will load that data from
a file.

● To the right -- is the entire
parser for the .obj file.

● Observe where
universal function call
syntax (UFCS) really
shines allowing us to
right concise and
readable code.

Parsing Structured Data

41

● If we want to draw
something more
interesting than triangles,
we will load that data from
a file.

● To the right -- is the entire
parser for the .obj file.

● On your own time you can zoom in and contrast the C++ (left)
versus the D (right) code.
○ When simple, both read about the same -- but as

complexity goes up, the D code remains about the same
complexity.

Parsing Structured Data

42

● If we want to draw
something more
interesting than triangles,
we will load that data from
a file.

● To the right -- is the entire
parser for the .obj file.

● It remains a future experiment -- but I think with D’s built-in
concurrency (std.concurrency) I could probably speed this up
quite a bit.
○ It’s an open challenge to myself (and anyone else) to see

if you can build the fastest .obj parser.

https://twitter.com/MichaelShah/status/1731522845191057919

https://dlang.org/phobos/std_concurrency.html
https://twitter.com/MichaelShah/status/1731522845191057919

Parsing Structured Data

43

● If we want to draw
something more
interesting than triangles,
we will load that data from
a file.

● To the right -- is the entire
parser for the .obj file.

https://twitter.com/MichaelShah/status/1731522845191057919

● Anyways... with a little bit more code, I was able to extend my
parser to handle .obj files that contain multiple models and
materials.
○ A mix of functional and object-oriented paradigms made

this quite nice!

https://twitter.com/MichaelShah/status/1731522845191057919

Parsing Structured Data

44

● If we want to draw
something more
interesting than triangles,
we will load that data from
a file.

● To the right -- is the entire
parser for the .obj file.

● The other thing to note -- is that
complexity often arises with the many
variations of 3D data.
○ A 3D model can contain vertices or

a number of other attributes such
as texture coordinates, vertex
normals, or other primitives.

https://paulbourke.net/dataformats/obj/

https://paulbourke.net/dataformats/obj/

Parsing Structured Data

45

● If we want to draw
something more
interesting than triangles,
we will load that data from
a file.

● To the right -- is the entire
parser for the .obj file.

https://paulbourke.net/dataformats/obj/

● With D’s metaprogramming capabilities,
you can generate the variations you
need for your geometry data.

https://paulbourke.net/dataformats/obj/

Parsing Structured Data

46

● If we want to draw
something more
interesting than triangles,
we will load that data from
a file.

● To the right -- is the entire
parser for the .obj file.

https://paulbourke.net/dataformats/obj/

● With D’s metaprogramming capabilities,
you can generate the variations you
need for your geometry data.
○ This could also include setting up

the various layouts needed for
passing data to OpenGL

○ Observe the the right two different
layouts
■ Why write this error prone

boilerplate, when we could
otherwise generate it?

https://paulbourke.net/dataformats/obj/

Demo 3
Render Targets

47

Multiple Render Targets (1/2)

48

● What the acute watcher will
observe is that the last two
demos are almost exactly
the same

○ The difference is that this
final demo renders to an
offscreen texture, before
rendering the object

Renderpass
#1

Renderpass
#2

Renderpass
...

Final image is composed
of the ‘data’ from other

intermediate renderings.

Often we defer expensive
calculations to the end to
only compute them once
(e.g. deferred rendering)

Multiple Render Targets (2/2)

49

● There is actually nothing D
specific here -- this is just a
function of the API

● And that’s exactly my point
-- if you’ve seen it done in
other languages with
graphics APIs, you can do
the same work with D, and
take advantage of D’s
productivity.

Renderpass
#1

Renderpass
#2

Renderpass
...

Final image is composed
of the ‘data’ from other

intermediate renderings.

Often we defer expensive
calculations to the end to
only compute them once
(e.g. deferred rendering)

D Graphics Projects
(More projects found at my FOSDEM 2024 talk here:
https://www.youtube.com/watch?v=yLaUsmLr9so)

50

https://www.youtube.com/watch?v=yLaUsmLr9so

AAA Game Projects in D

● It’s also worth noting that D has been
used in AAA Commercial Games

○ Ethan Watson has a wonderful
presentation describing that experience

○ Link to talk:
https://www.gdcvault.com/play/1023843/D-
Using-an-Emerging-Language

● Talk Abstract: Can you use D to make games? Yes.
Has it been used in a major release? It has now. But what
benefits does it have over C++? Is it ready for mass use?
Does treating code as data with a traditional C++ engine
work? This talk will cover Remedy's usage of the D
programming language in Quantum Break and also
provide some details on where we want to take usage of
it in the future.

51

https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQX
VyMTYxMzY1ODg@._V1_.jpg

Utilized the D Programming Language Quantum Break -- Game

https://www.gdcvault.com/play/1023843/D-Using-an-Emerging-Language
https://www.gdcvault.com/play/1023843/D-Using-an-Emerging-Language
https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQXVyMTYxMzY1ODg@._V1_.jpg
https://m.media-amazon.com/images/M/MV5BOThjOWRhN2QtYmIxMy00MGE3LTk5ZWMtY2ZkMzI0MGY1ZTM1XkEyXkFqcGdeQXVyMTYxMzY1ODg@._V1_.jpg

● Website with games and tutorials: https://gecko0307.github.io/dagon/
● Github or Dub Repository: https://github.com/gecko0307/dagon | https://code.dlang.org/packages/dagon

52

Built in the D Programming Language Dagon -- Game Engine

https://gecko0307.github.io/dagon/
https://github.com/gecko0307/dagon
https://code.dlang.org/packages/dagon

● Website with games: https://circularstudios.com/
● Github or Dub Repository: https://github.com/Circular-Studios/Dash
● Forum Post: https://forum.dlang.org/thread/qnaqymkehjvopwxwvwig@forum.dlang.org 53

Built in the D Programming Language Dash -- Game Engine

https://circularstudios.com/
https://github.com/Circular-Studios/Dash
https://forum.dlang.org/thread/qnaqymkehjvopwxwvwig@forum.dlang.org

● Github or Dub Repository: https://github.com/MrcSnm/HipremeEngine
● DConf 2023 Talk: DConf '23 -- Hipreme Engine: Bringing D Everywhere -- Marcelo Mancini

54

Built in the D Programming Language Hipreme Engine -- Game Engine

https://github.com/MrcSnm/HipremeEngine
https://www.youtube.com/watch?v=jgygD7B_CPk

● Website: https://gdtk.uqcloud.net/ and https://gdtk.uqcloud.net/pdfs/eilmer-user-guide.pdf
● Github or Dub Repository: https://github.com/gdtk-uq/gdtk

55

Built in the D Programming Language Eilmer(/ɛlmə/) Compressible Flow Simulator

https://gdtk.uqcloud.net/
https://gdtk.uqcloud.net/pdfs/eilmer-user-guide.pdf
https://github.com/gdtk-uq/gdtk

Learning More About the D Language

56

Further Understanding the Case for Dlang

● In 2020 the ACM’s History
of Programming Languages
(HOPL) had an article
published by Walter,
Andrei, and Mike Parker to
understand the origins of
the language

○ I would encourage D
programmers and newcomers
to read the article which
motivates the language and
the ‘why’ behind its design
decision.

57

https://dl.acm.org/doi//10.1145/3386323

https://dl.acm.org/doi/abs/10.1145/3386323

Further resources and training materials

58

● Tons of talks (Games, graphics, servers, etc.)
○ https://wiki.dlang.org/Videos#Tutorials

● My ‘Graphics Related’ talks on Ray Tracers
○ DConf '22: Ray Tracing in (Less Than) One Weekend with DLang -- Mike Shah

■ https://www.youtube.com/watch?v=nCIB8df7q2g
○ DConf Online '22 - Engineering a Ray Tracer on the Next Weekend with DLang

■ https://www.youtube.com/watch?v=MFhTRiobWfU

https://wiki.dlang.org/Videos#Tutorials
https://www.youtube.com/watch?v=nCIB8df7q2g
https://www.youtube.com/watch?v=MFhTRiobWfU

Vulkan

● Most folks will probably point you to Vulkan as a modern graphics API to learn
○ They are probably right -- as Vulkan allows you to create pipelines that execute much better

concurrently.
○ D has several bindings to Vulkan that you can start using today

59

The D language tour

● Nice set of online tutorials
that you can work through
in 1 day

○ Found directly on the D
language website under
‘Learn’

60

https://tour.dlang.org/

https://tour.dlang.org/

More Resources for Learning D

I would start with these two books

1. Programming in D by Ali Çehreli
a. Freely available http://ddili.org/

2. Learning D by Michael Parker

Any other books you find on D are also very
good -- folks in the D community write books
out of passion!

The online forums and discord are otherwise
very active

61

http://ddili.org/

YouTube

● I am actively adding
more lessons about the
D programming
language

○ https://www.youtube.com
/c/MikeShah

● Eventually I will add
graphics to this playlist
or another on my
channel.

62
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV

https://www.youtube.com/c/MikeShah
https://www.youtube.com/c/MikeShah
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV

The Case for Graphics
-- Programming in DLang

with Mike Shah

63

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

 Thank you DConf Online

18:00 - 18:30 UTC Sat, March 16, 2024

~30 minutes | Introductory Audience

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you!

64

